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HOMOGENEOUS PROBLEM FOR A WEDGE WITH A SYMMETRIC CRACK AT THE APEX* 

L.A. KIPNIS 

An exact solution of the plane, static homogeneous problem of the theory of elastic- 

ity of class N [I], is constructed for a wedge, encompassing a half-space, with a 

crack at the apex situated in the bisector plane. 

Fig.2 

Fig.1 

1. Formulation of the problem. We consider an infinite elastic wedge with the cone 

angle greater than x, containing a crack at y= O,s< l(Fig.1). The wedge and crack edgesare 

stress-free. We assume that at infinity the solution of the corresponding symmetrical (with 
respect to the plane 8=0) problem behaves in the same manner, as the solution of the symmetric 
problem for a wedge -af8<a,n/Z<a.<n with stress-free edges (Fig.2), asymptotically larg- 
est at infinity and satisfying the condition that the stresses decay at infinity. As we know 
(see e.g. /l/), the latter solution has the form (ua.~~s,% are the stresses and us,+ the dis- 

placements) 

0, = A1 [(a1 + 1) cos (II - 1) e - f1 (a) cos (X, + 1) 81 

%a = A, [(A, - 1) sin (h, - 1) 0 - f1 (a) sin (h, + 1) ej 

U, = AI I(3 - kl) cos (a, - i) e + fl (a) cos (a1 + 1) ei 

f~ (a) _ (a, -,f) sin (a, - 1) a 

sln(a,+i)a 1 

_ arena, ~12<~<~ 

(1.1) 

Here &(a)E(V2,1) is a unique root of the equation sin2pa+psin2a= 0 in the strip 0< Hep<i of 

the complex plane p, and C, is an arbitrary real constant. 

The solution (1.1) must be realized in the form of an asymptotics at infinity of the 
required solution of the initial symmetric problem for a wedge with a crack. Thus the bound- 
ary conditions of the initial symmetric problem can be written in the form 

8 = cf. 00 = S,Q =O(n/2<a<n) (1.2) 

e = 0, trO = 0 

e = 0, r < 1, oe = 0; e = 0, r > I, u. = 0 (1.3) 

Moreover, the following condition, in particular, must hold at infinity: 

e=o, r-m, Ga--& 

QI = C, (.‘n)h-’ 
1, ~0s hIa sina + sin hacosa 

Bin (a, + i) a 
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where the constant C1 is assumed given by the condition of the problem. The constant has a 
dimension of force divided by the length to power a, (a) + 1. 

We have the following asymptotics /l/ near the crack end: 

0 = 0, r--1+0, KI 
So - 1/2n(r- 1) 

9 ~+o, 
au, 2 (1 -v") k', 

r--l-O. dr--7 
V22n(r- I) 

where KI is the stress intensity coefficient, to be determined, E is the Young's modulus and 
V is the Poisson's ratio. If the wedge angle does not exceed n, then the symmetric homo- 

geneous problem in question belongs to class S[i] and has a trivial solution only. 

In dealing with a skew symmetric homogeneous problem we shall assume that the wedgeangle 
varies within the limits 2a* <2a < 2n(2a *z225'i0;a, is a unique root of the equation 2a cos2a - 

sin2a= 0 on the intervalni2 <a< x),since in the case of 2r*4 %a, the problem belongs to class 
S and has a trivial solution only. 

The solution of the skew symmetric problem for the wedge -a< t),i OL, ~,<a< x with 

stress-free edges, asymptotically largestatinfinity and satisfying the condition that the 
stress decays at infinity, has the form 

0" = AI1 [(h, + Ij sin (h, - 1) 9 - fz (a) sin (AZ + 1) 91 (1.4) 

%I = A,, I- (h, - 1) cos (h, - 1) 0 -L iI (a) cos (h, -/- 1) 01 

fir = AI1 [(3 - &) sin (h2 - 1) 9 -'- f2 (a) sin (h, + I)91 

i 
2 
(a) = (i>+ 1) sin (& - ija CII 

sin&+ 1)a , A,, T((arr+-' 

--a<esa,a,<a<x 

Here h,(a)~(V~,i) is a unique root of the equation sin 2pa -p sin 2a= 0 in the strip o< Rep<f, 
and C,, is an arbitrary real constant. The solution (1.4) must be realized in the form of 

an asymptotics at infinity of the solution of the skew symmetric problem in question. 
We write the boundary conditions of the skew symmetric problem in the form 

9 = a, S8 = zre = O(a*<a<n), e = 0, 0, = 0 

8 = 0, r < 1, z,, = 0; 9 = 0, r > 1, ur = 0, e-o. r-m. 
Q 11 

%l - yl-h, 

QI* = C,,(2a+' 
- h,eos h,asina+ sin h,acosa 

sin (h? + i)a 

The constant Cl, is assumed given. It has the dimension of force divided by length topower 

h,(a) + 1. Let us write the asymptotics near the crack end 

e =o, r--1+0, 
RI1 

58 - 1/2n(r - 1) 

e=+o, 
a% 2 (1 -Y?) 

r-1-0, 7-7 
K11 

V2n(Z -r) 

where li,, is the stress intensity coefficient, to be determined. We can assume without loss 

ofgenerality that the crack is of unit length. 

2. Wiener-Hopf equations and stress intensity coefficients. The solution 
of the symmetric homogeneous problem in question is a sum of solutions of the following two 

problems. 
In the first problem the condition (1.2) and second condition of (1.3) are retained,and 

the first condition of (1.3) is replaced by 

e=o, r<l, GO=-$ (2.1) 

The stress decay at infinity as 0(1/r). The second problem is a symmetric problem for awedge 

with stress-free edges (its solution (1.1) will be kept in mind). 
Applying the Mellin integral transform to the equations of equilibrium, condition Of 

compatibility of deformations, Hooke's law and conditions (1.2) and taking into account the 

second condition of (1.3) and condition (2.1), we arrive at the following functionalwiener- 

Hopf equation: 

@I+ (P) - g&- 
1 

= - B PG (P) @1- (P) (2.2) 

G (PI = 
2(pl sinza - sinapa) 

- $ pn (sin2pa+ psin2a) 
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Using the factorization /2,3/ 

C,(p) = $$$- (Rcp=O) 

i, 
i * 

=P 2ni 1 s 

In G1 (t) 
t--p& = 

-*, 
I I 

cl+ (P) , me<0 

G,-(P), Rap>0 

(2.3) 

P ctg Pn = K+ (P) K- (P), Iv* (P! = +gy 

where (I'(z)is the Euler gamma function, we can write the equation (2.2) in the form 

(2.4) 

Q$+ (P) -_ 
P (P + Al) cl+ (P) ~ 

@I- (P) 
-1- 
K- (P) (‘l- (P) (no p = 0) (2.5) 

Using the expression 

QIK+ (P) 
P (P + w cl+ (PI - P+ a1 

we obtain, in accordance with (2.5), 

CRC P = 0) 

K+ (P) f&+ (P) QI 
PC,+ (P) 

_- 
P + al 

The function appearing in the left-hand side of (2.6) is analytic in the half-plane Rep< 

0, while the function in its right-hand side is analytic in the half-plane Rep>O. It fol- 

lows therefore that both functions are equal to a single function analytic in the whole p- 

plane. We have the following asymptotic relations (p--j: 

@If (P) - ++ 1 CD,- (p) _ - - 
;i 

(2.7) 

From (2.3), (2.4) and (2.7) it follows that the functions in the left-and right-hand sides of 

(2.6) tend to zero as p -+m in the half-plane Rep<0 and Rep>0 respectively. Thus the single 

analytic function is identically equal to zero in the whole p-plane. A solution of the fun- 

ctional equation (2.2) has the form 

PQI K+ (P) 
mD,+ (P) = x [- 

K+ (- a,) 
PC,+ (P) + A,(:,+ (- al) 

(‘I+ (P) l- K+ (P) (Rrp < 0) 

Q++ (- ad 
@I- (P) = - bl (p + aI) cl+ (_ A,) CC (P) Km (P) (ne P > 0) 

We construct the solution of the skew symmetric problem is exactly the same manner, and the 
following functional equation corresponds to this solution: 

QII 
@L+ (PI - P+hs = - tg pnc, (p) fD- (p) 

cz (p) = 
2 (p2 sin* a - sin” pa) 

- tgpn(sin Zpcr- psin 2a) 

u&+(p) = <,,(r, O)rPdr, s E 
@1- (P) = qi 

’ au, 

s I yjy rp dr 

1 0 e=+o 

The factorization (2.3) in which G,(p),G,*+(p)is replaced by G,(P), c&,*(p), holds for the fun- 
ction G(P). The stress intensity coefficients in the initial homogeneous solution are ex- 

pressed by the formula 

J5 ‘T+ (- Q.) 

Kz a,~~+ (- a,) QJ 
hk-'I. 
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where k = 1,Z;n = I when k = 1 and n = IIwhen k =2. 

The author thanks G.P. Cherepanov for assessing the paper. 
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